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A two-dimensional vertical non-hydrostatic � model
with an implicit method for free-surface �ows
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SUMMARY

An implicit �nite di�erence model in the � co-ordinate system is developed for non-hydrostatic, two-
dimensional vertical plane free-surface �ows. To accurately simulate interaction of free-surface �ows
with uneven bottoms, the unsteady Navier–Stokes equations and the free-surface boundary condition
are solved simultaneously in a regular transformed � domain using a fully implicit method in two
steps. First, the vertical velocity and pressure are expressed as functions of horizontal velocity. Second,
substituting these relationship into the horizontal momentum equation provides a block tri-diagonal
matrix system with the unknown of horizontal velocity, which can be solved by a direct matrix solver
without iteration. A new treatment of non-hydrostatic pressure condition at the top-layer cell is developed
and found to be important for resolving the phase of wave propagation. Additional terms introduced
by the � co-ordinate transformation are discretized appropriately in order to obtain accurate and stable
numerical results. The developed model has been validated by several tests involving free-surface �ows
with strong vertical accelerations and non-linear waves interacting with uneven bottoms. Comparisons
among numerical results, analytical solutions and experimental data show the capability of the model
to simulate free-surface �ow problems. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: implicit; � co-ordinate; non-hydrostatic pressure; free-surface �ows

1. INTRODUCTION

Numerical modelling for simulating free-surface �ows using the incompressible Navier–Stokes
equations (NSE) has been intensively investigated in recent years [1–4]. In most of these
models, it is assumed that the vertical acceleration is small so that a hydrostatic assumption
can be used. This assumption is generally valid for simulating �ows where the horizontal
scale of motion is much larger than the vertical motion. However, for applications involving
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conditions such as short period waves, abruptly changing bed topographies, and strati�cation
due to strong density gradients, the hydrostatic assumption is no longer valid. The use of
the non-hydrostatic pressure distribution, resulting in solving the complete NSE, is necessary
[5–8].
For simulating free-surface evolution with the complete NSE the well-known methods are

the Marker-and-Cell (MAC) method [9] and the volume of �uid (VOF) method [10]. Another
technique for tracking the free surface is the arbitrary Lagrangian–Eulerian (ALE) method
[11], which is based on surface adaptive grids with a moving frame of references. All MAC,
VOF and ALE methods have been used to simulate complicated free-surface �ows such as
breaking waves [12–14]. However, these methods require high computational expense and are
limited by severe stability restriction [15; 16]. Issues of applying these models to large-scale
geophysical and environmental �ow problems remain [17].
In recent years, e�orts have been devoted to develop cost-e�ective free-surface �ow mod-

els based upon the non-hydrostatic pressure distribution. For example, a semi-implicit frac-
tional step method [18] o�ers the advantage of e�ciency and stability by solving the NSE
in two steps. For the �rst step the derivative of the surface elevation in the hydrostatic
momentum equation and the velocity in the continuity equation are discretized implicitly
but the convective and horizontal viscosity terms are discretized explicitly. For the second
step the non-hydrostatic pressure component is obtained by requiring the estimated velocity
�eld in the �rst step to be convergent, resulting in solving the pressure Poisson equation
(PPE). The �ow �eld components are then corrected by adding the calculated non-hydrostatic
pressure. Other e�cient models are based on an explicit projection method [16; 19; 20], in
which the NSE is advanced in time to obtain projected velocities by solving advection and dif-
fusion terms explicitly. The projected velocities are then corrected by solving the PPE. While
the progress for simulating unsteady free-surface �ow using the semi-implicit fractional step
method and the explicit projection method is ongoing, the cost of solving the PPE remains
an issue for many practical applications [20]. Recently a fully implicit method with the only
unknown of horizontal velocity was successfully developed by Namin et al. [21] to simulate
non-hydrostatic free-surface �ows by solving a block tri-diagonal matrix. Compared to the
PPE systems, the block tri-diagonal system implicitly incorporates the vertical velocity and
pressure into the horizontal momentum equation. Therefore, the NSE and free-surface bound-
ary conditions can be solved simultaneously, without any intermediate value being introduced.
In addition, while both the block tri-diagonal system and PPE system share the same matrix
dimensions, iterative methods (e.g. the conjugate gradient method) are usually used to solve
PPE of a sparse matrix system (e.g. �ve diagonal system for Cartesian two-dimensional ver-
tical plane problem). In contrast, a direct matrix solver (e.g. double-sweep method and cyclic
reduction method) can readily work for the block tri-diagonal system without any iteration.
The terrain-following � co-ordinate is widely used for modelling free-surface �ows over

irregular bottoms [1; 5; 14; 16; 20]. Being one type of boundary-�tted co-ordinates, the �
co-ordinate is capable to vertically transform the varying topography into a regular domain.
Boundary conditions at both the free surface and the bottom can thus be accurately repre-
sented. Therefore, the � co-ordinate is widely applied in both the hydrostatic models [1]
and the non-hydrostatic models. For example, two-dimensional and three-dimensional �
non-hydrostatic models with the semi-implicit fractional step method were developed by
Stansby and Zhou [14] and Kocyigit et al. [22]. The explicit projection method was also
incorporated to the � non-hydrostatic model for water wave simulations [16; 19]. To date, the
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numerical scheme for the fully implicit method was only in the Cartesian co-ordinate [21].
Implementation of fully implicit method in � co-ordinate is yet developed.
In this paper, the implicit method for solving the complete NSE is extended to the � co-

ordinate. Maintaining the advantage of the boundary-�tted co-ordinate, the developed model
can simultaneously solve all �ow �eld components within each time step. The features make
the model capable for simulating free-surface �ows over irregular geometries. Without em-
ploying hydrostatic pressure representation at the centre of free-surface layer, a non-hydrostatic
pressure expression for free-surface cells is derived. In the following sections, mathematical
formulations and boundary conditions in both the Cartesian and the � co-ordinates are given
�rst. Numerical method is presented next. Finally, model results are compared to analytical
solutions and=or experimental data for several examples: standing wave oscillation in a closed
basin, solitary wave propagation in constant and variable water depths, and periodic wave
propagation over a submerged bar.

2. MATHEMATICAL FORMULATION

2.1. Governing equations and boundary conditions in the Cartesian co-ordinate

For incompressible �ows in the two-dimensional vertical plane, the Navier–Stokes equations
in the Cartesian co-ordinate (x∗; z∗; t∗) are

@u
@x∗ +

@w
@z∗

=0 (1)
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@t∗

+ u
@u
@x∗ + w

@u
@z∗

=− @P
@x∗ + �

(
@2u
@x∗2 +

@2u
@z∗2

)
(2)
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@t∗

+ u
@w
@x∗ + w

@w
@z∗

=− @P
@z∗

+ �
(
@2w
@x∗2 +

@2w
@z∗2

)
− g (3)

where u and w are velocity components in the x∗- and z∗-direction, respectively; t∗ is time; P
is the normalized pressure, de�ned as the pressure divided by the density; g is the gravitational
acceleration; and � is the kinematic viscosity.
Various surface boundary conditions are needed for solving Equations (1)–(3). The kine-

matic boundary condition at the impermeable bottom is

u
@h
@x∗ + w=0 (4)

where h(x∗) is the water depth measured from the undisturbed mean water level (Figure 1(a)).
Similarly, the kinematic boundary condition at the free surface is

@�
@t∗

+ u
@�
@x∗ =w (5)

where �(x∗; t∗) is the free-surface elevation measured from the undisturbed mean water level.
The conservative form of free-surface equation can be obtained by integrating continuity
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Figure 1. The � co-ordinate transformation between (a) real physical and (b)
transformed computational mesh.

equation (1) over depth and applying the kinematic boundary conditions (4) and (5),
giving

@�
@t∗

+
@
@x∗

∫ �

−h
u dz∗=0 (6)

The wind induced shear stress at the free surface is

��
@u
@z∗

=(�tn)air (7)

where (�tn)air denotes the wind stress in the x∗-direction. The continuity of normal stress
(�nn)air across the free surface is assumed. In the case of no wind, both shear stress (�tn)air
and (�nn)air are then set to be zero. In addition, the pressure at the free surface is equal to
atmospheric pressure, taken as zero, i.e.

Pz∗ = �=0 (8)

The in�ow and out�ow boundary conditions are also needed for simulating free-surface
wave propagation. At the in�ow boundary, the velocity is given. At the out�ow, a radiation
boundary condition is applied, i.e.

@�
@t∗

+ c
@�
@x∗ =0 (9)

where c is the wave celerity, and � can be �, u or w.

2.2. Governing equations and boundary conditions in the � co-ordinate

To simulate �ows over irregular geometries, a terrain-following � co-ordinate enables the
bottom boundary and the free surface to be better resolved [23]. Following Reference [24],
the transformation between the � co-ordinate and the Cartesian co-ordinate is given as

t= t∗; x= x∗; �=
z∗ − �
h+ �

=
z∗ − �(x; t)
H (x; t)

(10)
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where H is the total water depth. The transformation maps a time-dependent physical, real
domain into a stationary uniform transformed � domain, resulting in �=−1 at the bottom
and �=0 at the free surface (Figure 1(b)).
Based upon the principle of chain di�erentiation, the governing equations (1)–(3) in the

new co-ordinate (x; �; t) are
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+
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where
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and
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= − 1
H
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− u
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(
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)
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w
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(14d)

It should be noted that, in the case of �ows over a steep topography, the � co-ordinate
transformation could introduce numerical errors in calculating the horizontal pressure gradient
and the horizontal di�usion [25; 26]. Special numerical treatments to address this problem
have been well documented [27]. In this paper, we do not include the treatment since our
applications only involve free-surface �ows over topographies with mild steepness. Thus, the
numerical results are free of the steepness-introduced errors.
For the boundary conditions in the � co-ordinate, the Dirichlet-type condition remains the

same as the Cartesian form, i.e.

P�=0 =0 (15)

However, the Neumann-type condition, i.e. any derivative of velocity, free surface or pressure,
needs to be transformed. Using Equation (10), boundary conditions (4), (6) and (9) are
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expressed in the � co-ordinate as

u
@h
@x
+ w� =0 (16)

@�
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u d�

)
=0 (17)
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)
=0 (18)

3. NUMERICAL METHOD

In this paper, a �nite di�erence approximation is used to discretize the governing equations
and boundary conditions in the � co-ordinate. A staggered grid mesh system with a set of
uniform rectangular M ×N cells in x- and �-direction is employed. The velocity components
are de�ned at the sides for each cell, and the pressure and free-surface elevation are located
at the centre of the cell (Figure 2).
A fully implicit scheme with a central di�erence in space is used in two steps. First, the

vertical velocity and pressure are expressed as functions of horizontal velocities. Second, sub-
stituting these relationship into the horizontal momentum equation gives a block tri-diagonal
matrix system with unknown horizontal velocities, which can be directly solved. The overall
accuracy of the scheme is second-order in space and second-order in time under a 0.5 im-
plicit time weighting factor. Details of the implicit method in the Cartesian co-ordinate can be
referred to Reference [21]. In this paper, we extend the implicit method to the � co-ordinate.
Special attention is paid to the treatment of non-hydrostatic pressure condition at the top-layer
cell. Additional terms introduced by the � co-ordinate transformation are also discretized ap-
propriately in order to obtain accurate and stable numerical results. Details of the numerical
method are given below.
Continuity equation: The continuity equation (11) is discretized implicitly at the point

(i; k) as

un+1i+1=2; k − un+1i−1=2; k
�x

+
un+1i+1=2; k+1 + u

n+1
i−1=2; k+1 − un+1i+1=2; k−1 − un+1i−1=2; k−1

4��

(
@�
@x∗

)n
i; k

+
1
Hn
i

wn+1i; k+1=2 − wn+1i; k−1=2
��

≈ 0 (19)

where the term (@�=@x∗)ni; k is discretized as(
@�
@x∗

)n
i; k

≈ − 1
Hn
i

(�ni+1=2 − �ni−1=2
�x

+ �k
Hn
i+1=2 −Hn

i−1=2
�x

)
(20)

The above discretization is sequentially applied from the bottom cell, k=1, to the free-surface
cell, k=N , (Figure 2). Being expressed as the function of the adjacent horizontal velocities,
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Figure 2. The staggered grid mesh in the � co-ordinate.

the vertical velocity at each layer (i.e. k=1; 2; : : : ; N ) is

wn+1i; k+1=2 ≈wn+1i;1−1=2 − Hn
i ��
�x
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)n
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]
(21)

where wn+1i;1−1=2 is the known vertical velocity from the bottom boundary condition.
Vertical momentum equation: To represent the pressure at each layer below except for the

top one (i.e. k=1; 2; : : : ; N − 1) by the horizontal velocity, the vertical momentum equation
(13) is used. The discretization of each term in the equation at the point (i; k +1=2) is given
below:
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where ��m is the implicit weighting factor, 0¡��m¡1, and
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where the discretized form of (@�=@x∗) can be referred to Equation (20), the calculation of
(@�=@z∗) are shown in Equation (14c), and
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By substituting Equations (22)–(27) into Equation (13), the pressure at the lower layer can
be written as function of the upper-layer pressure and the velocities, i.e.

Pn+1i; k ≈ Pn+1i; k+1 + ak0w
n+1
i; k−1=2 + ak1w
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ak7 =
Hn
i ��
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{
− 1
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Equation (28) is valid from the bottom layer, k=1, to the one below the top layer, k=N −1.
Further treatment of the pressure at the top layer, k=N , is necessary.
Pressure at the free-surface cell: In the staggered grid system, the top-layer pressure is

generally treated by employing the hydrostatic approximation [20–22]. Di�culties of repre-
senting the top-layer pressure in the non-hydrostatic �ow exist [17; 18]. In this paper, both
hydrostatic and non-hydrostatic components are included in the top-layer pressure, i.e.

P�=�N =
g(h+ �)��

2
+
@
@t

∫ 0

�N
(Hw) d�+
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∣∣∣∣∣
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(29)

where �N represents the centre of the top-layer cells (see Figure 2) and H = h + �. Equa-
tion (29) is analytically derived by integrating the vertical momentum equation (13) over
half of the top-layer cell and applying w�=0 at the free surface. The advantage of applying
Equation (29) is to algebraically represent the top-layer pressure by the free-surface elevation
(the �rst term in the right-hand side) and the vertical acceleration (the rest of the terms in
the right-hand side).
A linearization approximation is used to discretize Equation (29), giving
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where Hn+1
i = hi + �n+1i ; wn+1i; N =(wn+1i; N−1=2 + w

n+1
i; N+1=2)=2, and w

n
i;N =(w

n
i;N−1=2 + w

n
i;N+1=2)=2. To

further express the top-layer pressure by horizontal velocity, the free-surface equation (17) is
discretized and rearranged as

�n+1i ≈ �ni − �fs �t���x

(
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where �fs is the implicit weighting factor with 0¡�fs¡1. Substituting Equation (31) into
Equation (30) yields the top-layer pressure

Pn+1i; N = aN0wn+1i; N−1=2 + aN1w
n+1
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(
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i−1=2
N∑
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In both Equations (32) for the top layer and Equation (28) for layers below the top layer,
the pressure is an implicit function of horizontal and vertical velocities. The vertical velocity
is further eliminated by substituting Equation (21) into Equations (32) and (28), giving a
matrix form

�Pn+1i = ��Bi �Un+1
i−1=2 +

��Ci �Un+1
i+1=2 + �Di (33)

where the double overbar denotes a two-dimensional matrix and the single overbar denotes
a vector. The pressure at each layer thus can be written as the function of the adjacent
horizontal velocities with coe�cients in the matrices ��Bi; ��Ci and ��Di which can be determined
from Equations (28) and (32).
Horizontal momentum equation: The second step of the implicit method is to obtain a block

tri-diagonal matrix system with the only unknown of horizontal velocity by eliminating the
vertical velocity and pressure from the horizontal momentum equation (12). The discretization
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of each term in Equation (12) at the point (i + 1=2; k) from the bottom layer, k=1, to the
top layer, k=N , is given below:

@u
@t

≈ un+1i+1=2; k − uni+1=2; k
�t

(34)

u
@u
@x

≈ uni+1=2; k
un+1i+3=2; k − un+1i−1=2; k

2�x
(35)

w�
@u
@�

≈ (w�)ni+1=2; k
un+1i+1=2; k+1 − un+1i+1=2; k−1

2��
(36)

(
@P
@x
+
@P
@�

@�
@x∗

)
≈ �hm

[
Pn+1i+1; k − Pn+1i; k

�x
+
Pn+1i; k+1 + P

n+1
i+1; k+1 − Pn+1i; k−1 − Pn+1i+1; k−1

4��

(
@�
@x∗

)n
i+1=2; k

]

+(1− �hm)
[
Pni+1; k − Pni; k

�x

+
Pni; k+1 + P

n
i+1; k+1 − Pni; k−1 − Pni+1; k−1

4��

(
@�
@x∗

)n
i+1=2; k

]
(37)

where �hm is the implicit weighting factor with 0¡�hm¡1, and

∇2
�u≈

(
@2u
@x2

)n
i+1=2; k

+ 2
(
@�
@x∗

)n
i+1=2; k

(
@2u
@x@�

)n
i+1=2; k

+

[(
@�
@x∗

)2
+
(
@�
@z∗

)2]n
i+1=2; k

(
@2u
@�2

)n
i+1=2; k

(38)

where (@2u=@x2)ni+1=2; k ; (@
2u=@x@�)ni+1=2; k and (@

2u=@�2)ni+1=2; k share the same discretization
scheme as Equation (27). Substituting Equations (34)–(38) into Equation (12) yields a matrix
form with the horizontal velocity and pressure as

��E1 �Un+1
i−1=2 +

��F1 �Pn+1i + ��E2 �Un+1
i+1=2 +

��F2 �Pn+1i+1 +
��E3 �Un+1

i+3=2 = �G0 (39)

where the coe�cient matrices can be obtained from Equations (34)–(38).
Eliminating the pressure in Equation (39) by using Equation (33) yields

��E1 �Un+1
i−1=2 +

��Em �Un+1
i+1=2 +

��Er �Un+1
i+3=2 = �G1 (40)

where

��El= ��E1 + ��F1 ��Bi

��Em= ��E2 + ��F1 ��Ci + ��F2 ��Bi+1

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:811–835



822 H. L. YUAN AND C. H. WU

��Er = ��E3 + ��F2 ��Ci+1

�G1 = �G0 − ��F1 �Di − ��F2 �Di+1

Equation (40) is a block tri-diagonal system with a dimension of MN ×MN , in which each
block sub-matrix has a dimension of N ×N . The only unknown, �Un+1, can be directly solved
using the double-sweep method [28] with the appropriate boundary conditions. Once the hor-
izontal velocity, un+1 solved, wn+1; �n+1 and Pn+1 can be directly determined from Equations
(21), (31) and (33), respectively, then wn+1� can be updated from the discretized form of
Equation (14d)

(w�)n+1i; k+1=2 ≈ − 1 + �k+1=2
Hn+1
i

�n+1i − �ni
�t

− u
n+1
i; k+1=2

Hn+1
i

(
�n+1i+1=2 − �n+1i−1=2

�x
+ �k+1=2

Hn+1
i+1=2 −Hn+1

i−1=2
�x

)
+
wn+1i; k+1=2

Hn+1
i

(41)

Radiation boundary condition: The radiation boundary condition (18) is discretized as

(�n+1IB + �n+1IB−1)− (�nIB + �nIB−1)
2�t

+
(
@�
@�

)n
IB

(
@�
@t∗

)n
IB

+ c

[
(�n+1IB + �nIB)− (�n+1IB−1 + �

n
IB−1)

2�x
+
(
@�
@�

)n
IB

(
@�
@x∗

)n
IB

]
=0 (42)

where IB=M for �= u, and IB=M + 1=2 for �=w or P. The upwind di�erence in space
is used.

4. MODEL VALIDATIONS

Four examples of free-surface �ow problems with signi�cant non-hydrostatic pressure are cho-
sen to evaluate the developed � model. The third and fourth examples also test the capability
of the model to simulate free-surface �ows interacting with uneven bottoms.
The implicit weighting factors �fs; ��m and �hm in Section 3 are used in the numerical dis-

cretization for the free-surface equation (31), vertical momentum equation (25) and horizontal
momentum equation (37), respectively. Similar implicit weighting factors have been sug-
gested in other models [14; 18; 21; 22]. For the implicit method in the Cartesian co-ordinate,
the factor values close to 0.5 were suggested to model short waves and higher values were
needed to give more stable results for long-wave or steady-�ow simulations [21]. For the
present � model, numerical tests show that the model is unconditionally stable by setting
�fs¿0:5; ��m¿0:5 and �hm¿0:5. In addition, the values around 0.9 for implicit weighting fac-
tors give the relative good results for both short-wave and long-wave simulations, suggesting
the results are not sensitive to the implicit parameters. In following tests, �fs= ��m= �hm=0:9
are used without further adjustment.
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4.1. Standing wave oscillation in a closed basin

A uninodal standing wave with an inviscid �uid in a closed basin is a good example for
demonstrating the e�ects of hydrodynamic pressure distribution on model results. The length
of the basin is L=10 m and the equilibrium water depth is h=10 m. The wave amplitude,
A=0:1, 1% of the water depth, is used here. The linear wave theory is valid in the case
since the wave steepness, 2�A=2L=0:031. The analytical solution for linear wave period is
T =3:588 s and wave celerity is c=5:575 m=s. Details of analytical solutions of the linear
standing wave in the basin can be found in Reference [29].
In the model, the computational domain is discretized by a set of uniform M ×N =20× 20

cells. A time step of �t=0:05 s is used. An initial free-surface elevation, �=A cos(2�x=2L),
is prescribed and a zero initial velocity is assumed. At bottom the impermeability or free-slip
(e.g. @u=@�=0) boundary conditions are applied. Comparisons of velocity and hydrodynamic
pressure �elds between the numerical results and analytical solutions at t=T=8, T=2 and
5T=8 are given in Figure 3. While the velocity �eld between x=0 and 5 m is downward at
t=T=8, the velocity �eld between x=0 and 5m is upward at t=5T=8. At t=T=2 the dynamic
pressure reaches to the maximum value, corresponding to a null velocity �elds. Generally, it
can be seen that the numerical results are in excellent agreement with the analytical solutions
based upon the linear wave theory. In Figure 4, time series for the free-surface elevation
at x=0:25 and 9:75 m using a hydrostatic approximation and the non-hydrostatic top-layer
treatment are shown. Apparent phase error is observed using the hydrostatic representation
at the top-layer cell. In contrast, both the wave amplitude and phase from the numerical
predictions using the fully non-hydrostatic pressure at the top cell are well compared with the
analytical solutions for the duration of 10 wave periods, suggesting that the implicit model is
capable of simulating hydrodynamic pressure and velocity. Figure 5 shows the time series of
horizontal velocity on the middle elevation of the water depth at x=2:25 m. The numerical
results with and without top-layer non-hydrostatic pressure treatment are also compared to the
analytical solution. Phase error is clearly observed using the hydrostatic representation at the
top-layer cell. The results from the fully non-hydrostatic model are in excellent agreement
with the analytical solutions, indicating the importance of using the non-hydrostatic pressure
at the free-surface cell.
To further address the accuracy and stability of the model, di�erent time steps, �t=0:0001;

0:001; 0:01; 0:05; 0:1 and 0:2 s are used. Numerical results of the free-surface elevation, �j,
at x=0:25 and 9:75 m are compared with the analytical solutions, �̃j. The error between the
numerical results and analytical solutions is measured by a norm

LCYC =

√
1

NCYC

NCYC∑
j=1
(�j − �̃j)2

where time cycles NCYC =T=�t, and 10T=�t, respectively. The numerical error from the
present model using the di�erent Courant numbers is shown in Table I. At Cr=0:558
the model can predict the same accurate results for the free-surface elevation as those from the
smaller Cr. For larger Courant numbers (e.g. Cr=1:115), the prediction of the free-surface
elevation is still promising, indicating the advantage of the model to simulate free-surface
�ows with less restricted time steps in comparison to the explicit numerical schemes.
Finally, mesh convergence test is performed to examine the sensitivity of the model on

mesh resolution. Under a �xed Courant number, Cr=0:558, four sets of mesh resolution (i.e.
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10× 10; 20× 10; 20× 20 and 40× 20, described in the form of x-resolution×�-resolution)
are chosen here. The accuracy of numerical results is 20 evaluated by the norm, LCYC, and the
comparisons are shown in Table II. The di�erence between the results using a mesh system
of 20× 20 and 40× 20 is very small, indicating that the solution is convergent using a 20× 20

Figure 3. Comparisons of velocity and dynamic pressure �elds for standing wave oscillation in a closed
basin between numerical results and analytical solutions at (a) t= 1

8 T , (b) t=
1
2T and (c) t=

5
8T . The

interval of each iso-line of dynamic pressure is 100 Pa.
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Figure 3. Continued.

mesh system. Moreover, Table II shows that a vertical resolution of 20 layers in this case is
necessary for accurately simulating the free-surface elevation.

4.2. Solitary wave propagation in a constant water depth

The purpose of this test is to validate the model capability for simulating solitary wave
propagation in a constant water depth. From the potential �ow theory, a small amplitude
solitary wave can propagate at a constant speed without changing its form and amplitude
over a horizontal bottom [30].
To test the model, the viscosity is set to zero. A solitary wave with an amplitude of

A=1:0m in a constant water depth h=10:0m is considered. The computational domain with
the length of L=2000 m is discretized by a set of uniform M ×N =1000× 10 cells. Using
a time step of �t=0:1 s, the Courant number is Cr= c�t=�x=0:519 in this test, where the
theoretical wave celerity c=

√
g(h+ A)=10:388 m=s. At left in�ow boundary time series of

the free-surface elevation and velocity based upon the analytical solution [31] are speci�ed.
The radiation boundary condition is imposed at the out�ow boundary. The initial position
of wave crest is speci�ed at x= − 150 m (out of the computational domain), enabling a
null initial condition for both the free-surface elevation and velocities in the computational
domain.
Figure 6 shows the comparisons of the free-surface elevation between the numerical results

and analytical solutions at t=45, 90, 135 and 180 s. The numerical results for both the
wave pro�le and wave celerity are in excellent agreement with analytical solutions. The mass
and energy are still well conserved after the wave has propagated about a distance of 200h.
Comparisons of horizontal and vertical velocities at the middle of the water elevation between
the numerical results and analytical solutions at these times are shown in Figure 7. Some
slightly noticeable di�erence occurs in the maximum horizontal velocity and vertical velocity.
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Generally, numerical results are almost identical to the analytical solution, suggesting that the
hydrodynamic pressure is accurately estimated by the model.

4.3. Solitary wave propagation in a variable water depth

This example is to validate the model ability of predicting the transformation of solitary wave
propagation over a variable water depth. It has been found theoretically and experimentally
that an initial solitary wave, propagating from one constant depth to another smaller constant
depth, will disintegrate into several solutions of varying sizes, trailed by an oscillatory tail.
This is called �ssion phenomenon [30; 32].
In this test, a solitary wave propagating from a constant depth h0 = 7:62 cm, past a 1:20

slope, on to a smaller constant depth h1 = 3:81 cm is simulated. An initial amplitude

Figure 4. Comparisons of free-surface elevation for standing wave oscillation in a closed basin
between numerical results (circles) and analytical solutions (solid lines) at x=0:25 and 9:75 m
using (a) non-hydrostatic model with hydrostatic pressure representation at the top layer, and

(b) fully non-hydrostatic model.
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Figure 4. Continued.

to the water depth ratio, A0=h0 = 0:12, is set, and the sketch of bottom pro�le is shown in
Figure 8. The initial wave celerity is c=

√
g(h0 + A0)=0:915m=s. The computational domain

with the length of 6m is discretized by a set of uniform M ×N =600× 10 cells. A time step
of �t=0:01 s is chosen. Similarly to the last example, free-surface elevation and velocities
based upon the analytical solution [31] at left in�ow boundary are speci�ed. The radiation
boundary condition is imposed at the out�ow boundary. Nevertheless the initial position of
wave crest is speci�ed at x= − 0:8 m.
In Figure 9, the numerical results for the free-surface elevation at four locations are com-

pared to the theoretical predictions and experimental data from Madsen and Mei [33]. The
�ssion phenomenon is well observed in the numerical results. For comparison, the analytical
predictions and experimental data are obtained by digitizing the �gures in Reference [33]. The
beginning time t=0 s in Figure 8 corresponds to the computational time t∗=2:62 s when the
wave crest arrives the position 1. The numerical results of the maximum wave amplitude at
positions 3 and 4 are in good agreement with estimated experimental amplitude for no viscous
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Figure 5. Comparisons of horizontal velocity at the middle elevation of the water depth at x=2:25 m
for standing wave oscillation in a closed basin between analytical solutions (solid lines) and numerical
results (circles) from di�erent models: (a) non-hydrostatic model with hydrostatic pressure representation

at the top layer, and (b) fully non-hydrostatic model.

damping [33]. At position 4, the present model predicted the relative height of 145% for the
larger wave and 68% for the smaller wave, compared to the initial wave height. This result
is quantitatively consistent with other numerical and analytical approximations (e.g. 150 and
52% from Reference [32], 167 and 71% for a longer distance analytical approximation from
Reference [33]). The success of the test indicates the potential of the present model to predict
the transformation of solitary wave propagation over variable water depth.

4.4. Periodic wave propagation over a submerged bar

The �nal example is to periodic wave propagation over a submerged bar. The objective is
to test the capability of the present model to simulate the relative strong interaction between
non-linear wave and uneven bottom. This problem has been experimentally and numerically
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Table I. Comparisons of numerical errors of the free-surface elevation under di�erent
Courant number Cr for standing wave oscillation in a closed basin.

LCYC=2A over 1T LCYC=2A over 10T

�t(s) Cr x = 0:25 m (%) x = 9:75 m (%) x = 0:25 m (%) x = 9:75 m (%)

0.0001 0.001 0.9 0.7 1.0 0.9
0.001 0.012 0.9 0.7 2.0 1.9
0.01 0.115 0.8 0.9 1.8 1.7
0.05 0.558 0.9 1.0 1.8 1.8
0.1 1.115 3.4 4.0 4.1 4.0
0.2 2.230 7.5 8.1 10.9 10.7

Table II. Mesh convergence test in terms of the free-surface elevation using di�erent
mesh resolutions for standing wave oscillation in a closed basin.

LCYC=2A over 1T LCYC=2A over 10T
Mesh resolution
(x-resolution× �-resolution) Cr x = 0:25 m (%) x = 9:75 m (%) x = 0:25 m (%) x = 9:75 m (%)

10× 10 4.9 5.0 30.1 33.7
20× 10 4.8 4.6 25.1 21.3

0.558
20× 20 0.9 1.0 1.8 1.8
40× 20 0.8 0.9 1.4 1.4

Figure 6. Comparisons of the free-surface elevation for solitary wave propagation in a constant wa-
ter depth between numerical results (circles) and analytical solutions (solid line) at t=45; 90; 135

and 180 s (from left to right).

investigated by numerous authors [14; 16–18; 20; 34–37]. It has been found that the shoaling
would occur on the upward slope and the non-linearity would generate signi�cant higher har-
monics, which travel phase-locked to the primary wave. Model results based on the hydrostatic
pressure assumption, neglecting the dispersion terms (corresponding to the non-hydrostatic
pressure), are totally di�erent and unrealistic [18].
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Figure 7. Comparisons of u and w at the middle elevation of the water depth for solitary wave propa-
gation in a constant water depth between numerical results (circles) and analytical solutions (solid line)

at t=45; 90; 135 and 180 s (from left to right).

In this test, the experiments set-up carried by Beji and Battijes [35] is used for the numer-
ical simulation. The geometry for the numerical computation is depicted in Figure 10. The
water depth is h0 = 0:4 m. At the in�ow boundary a progressive wave with a wave height of
H0 = 2:0 cm and a period of T0 = 2:0 s is speci�ed. At the out�ow boundary, di�culties of
representing the absorbing beach with a 1:25 slope in the physical experiment set-up have
been addressed by many authors. Zhou and Stansby [14] employed a reconstructed arti�cial
beach portion near the shallow water region in their numerical the sigma model to avoid
the di�culty in dealing with wetting=drying conditions. An open boundary condition like a
radiation boundary condition (RBC) is usually used to represent experimental wave absorbers
in other sigma models [13; 20] and the Boussinesq-type model [35]. In addition, the sponge
layer technique coupled with the radiation boundary is also used to serve as numerical wave
absorber [36; 37]. In this study, both the RBC and the sponge layer technique coupled with
RBC are used to replace the original beach. We �nd that there is no noticeable di�erence
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Figure 8. Sketch of the geometry for solitary wave propagation in a variable water depth.

Figure 9. Comparisons of the free-surface elevation for solitary wave propagation in a variable
water depth at location 1; 2; 3 and 4 among numerical results (solid line), theoretical predic-
tions (dashed line) and experimental data (circles). Dots represent the estimated experimental

amplitude for no viscous damping.
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Figure 10. Sketch of the geometry for periodic wave propagation over a submerged bar.

in the simulation results between these two treatments. Therefore, only the numerical results
using the RBC are shown in here.
The computational domain is discretized by a set of uniform M ×N =600× 20 cells, and a

time step of �t=0:02 s is chosen. The comparisons between the numerical results from the
present model and experimental data from [35], for the free-surface elevation at four di�erent
wave gauge locations, are shown in Figure 11. At position 1, the wave remains sinusoidal and
the numerical results are in excellent agreement with experimental data. From x=6 to 12 m,
the wave steepness is increased due to shoaling e�ects. At position 2, the model predicted
a value of 1.2 for shoaling coe�cient (equivalent to the relative wave height �=H0), which
agrees well with 1.182 from the analytical solution [29] and the experimental data. The model
also well simulates the wave riding over the bar at position 3 and the secondary wave mode
at position 5. The overall agreements between the numerical results and experiments indicate
that the present model is capable to simulate the interaction between non-linear short wave
and uneven bottom.

5. CONCLUSIONS

An implicit � model for non-hydrostatic, free-surface �ows in two-dimensional vertical plane
has been developed. The vertical momentum equation is fully considered without the hydro-
static assumption. In addition, a consistent non-hydrostatic-type pressure boundary condition
at the top-layer cells, in contrast to the hydrostatic approximation in previous studies, is devel-
oped and found to be important for resolving the phase of wave propagation. The employment
of the � co-ordinate ensures an accurate representation of the �ow at the bed and the free
surface. Using the implicit method, all the �ow �eld components are solved together within
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Figure 11. Comparisons of the free-surface elevation between numerical results (solid lines) and
experimental data (circles) at four wave gauge locations: 1; 2; 3 and 5.

one time step, and the resulting block tri-diagonal matrix system can be directly solved. The
model has the advantage of simulating free-surface �ows with less restricted time steps, in
comparison to those based on the explicit numerical schemes.
The developed model is validated by a series of free-surface �ow examples with signi�cant

vertical accelerations. For the case of standing wave oscillation in a closed basin, the model
predicts very accurate results for the free-surface elevation, velocities and dynamic pressure.
In modelling solitary wave propagation in a constant water depth, the numerical results for
free-surface elevation and velocities are also in excellent agreement with analytical solutions.
Numerical predictions for solitary wave propagation in a variable water depth and periodic
wave propagation over a bar are also tested. The agreement between numerical results and
experimental data is generally good, indicating that the model is capable of simulating inter-
actions of non-linear waves and bottoms with complicated geometry.
Numerical tests show that results for simulating short waves and long waves are not sensi-

tive to the implicit weighting factors (refer to Section 4) in the model. By setting a constant
value of the implicit parameter (0.9 is used in this study), the present � model can predict
relative good results for a range of applications without further adjusting the factors. The val-
idated model is being extended to three dimensions, taking into account the numerical errors
introduced by the � co-ordinate transformation for �ows over steep topography. The basic
idea is to decompose a three-dimensional problem into a series of two-dimensional systems
associated with each corresponding vertical plane. A block tri-diagonal solver can then be
used for solving each two-dimensional system. Comparison between the three-dimensional
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block tri-diagonal system and PPE system in terms of relative computational e�ciency will
be given in the future.
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